skip to main content


Search for: All records

Creators/Authors contains: "Heale, C."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    A 2D nonlinear, compressible model is used to simulate the acoustic‐gravity wave (AGW, i.e., encompassing the spectrum of acoustic and gravity waves) response to a thunderstorm squall‐line type source. We investigate the primary and secondary neutral AGW response in the thermosphere, consistent with waves that can couple to the F‐region ionospheric plasma, and manifest as Traveling Ionospheric Disturbances (TIDs). We find that primary waves atz = 240 km altitude have wavelengths and phase speeds in the range 170–270 km, and 180–320 m/s, respectively. The secondary waves generated have wavelengths ranging from ∼100 to 600 km, and phase speeds from 300 to 630 m/s. While there is overlap in the wave spectra, we find that the secondary waves (i.e., those that have been nonlinearly transformed or generated secondarily/subsequently from the primary wave) generally have faster phases than the primary waves. We also assess the notion that waves with fast phase speeds (that exceed proposed theoretical upper limits on passing from the mesosphere to thermosphere) observed at F‐region heights must be secondary waves, for example, those generated in situ by wave breaking in the lower thermosphere, rather than directly propagating primary waves from their sources. We find that primary waves with phase speeds greater than this proposed upper limit can tunnel through a deep portion of the lower/middle atmosphere and emerge as propagating waves in the thermosphere. Therefore, comparing a TID's/GWs phase speed with this upper limit is not a robust method of identifying whether an observed TID originates from a primary versus secondary AGW.

     
    more » « less
  2. Abstract

    A strong mountain wave, observed over Central Europe on 12 January 2016, is simulated in 2D under two fixed background wind conditions representing opposite tidal phases. The aim of the simulation is to investigate the breaking of the mountain wave and subsequent generation of nonprimary waves in the upper atmosphere. The model results show that the mountain wave first breaks as it approaches a mesospheric critical level creating turbulence on horizontal scales of 8–30 km. These turbulence scales couple directly to horizontal secondary waves scales, but those scales are prevented from reaching the thermosphere by the tidal winds, which act like a filter. Initial secondary waves that can reach the thermosphere range from 60 to 120 km in horizontal scale and are influenced by the scales of the horizontal and vertical forcing associated with wave breaking at mountain wave zonal phase width, and horizontal wavelength scales. Large‐scale nonprimary waves dominate over the whole duration of the simulation with horizontal scales of 107–300 km and periods of 11–22 minutes. The thermosphere winds heavily influence the time‐averaged spatial distribution of wave forcing in the thermosphere, which peaks at 150 km altitude and occurs both westward and eastward of the source in the 2 UT background simulation and primarily eastward of the source in the 7 UT background simulation. The forcing amplitude is2that of the primary mountain wave breaking and dissipation. This suggests that nonprimary waves play a significant role in gravity waves dynamics and improved understanding of the thermospheric winds is crucial to understanding their forcing distribution.

     
    more » « less
  3. Abstract

    The variations of the horizontal phase velocity of an internal gravity wave, generated by wave “blocking” or “reflection” due to an inhomogeneous wind field, have been predicted theoretically and numerically investigated but had yet to be captured experimentally. In this paper, through a collaborative observation campaign using a sodium (Na) Temperature/Wind lidar and a collocated Advanced Mesospheric Temperature Mapper (AMTM) at Utah State University (USU), we report the first potential evidence of such a unique gravity wave process. The study shows that a small‐scale wave, captured by the AMTM, with initial observed horizontal phase velocity of 37 ± 5 m/s toward the northwest direction, experienced a large and increasing headwind as it was propagating in the AMTM field of view. This resulted in significant deceleration along its initial traveling direction, and it became quasi‐stationary before it was “reflected” to the opposite direction at later time. The USU Na lidar measured the horizontal wind and temperature during the event, when the wave was found traveling within a temperature inversion layer and experiencing an increasing headwind relative to the wave. The wind agrees well with the expected value for wave blocking suggested by the wave tracing theory, implying the existence of a large horizontal wind gradient that night near the OH layer altitudes. The study indicates the critical role of horizontal winds and their horizontal gradients in determining propagation in vertical and horizontal directions.

     
    more » « less